KB285-85 Product Data Sheet Oil & Gas applications

In conjunction with Parker Seals, this range of high performance materials for Oil & Gas meets the most challenging and demanding applications for aggressive chemicals, gas and high temperatures. These materials offer excellent chemical and thermal resistance and thermal stability under these extreme application conditions.

We provide our customers with the highest quality products and technical support on seal design, material recommendation, installation techniques and test analysis, specifically for the oil & gas market.

KB285-85 HNBR is tested and approved to ISO 23936-2 RGD and $\rm H_2S$ 10% and is NACE TM0187 $\rm H_2S$ approved.

Basic Polymer: HNBR

Hardness: 85 +/- 5 Shore A

Temperature range: -32°C to +150°C

Colour: Black

Recommended for:

- Oils & greases made from petroleum or synthetic hydrocarbon base stock
- Weather & ozone
- · Cold & hot water
- Alcohols & glycols
- R-134a refrigerant
- Extrusion resistance
- Rapid Gas Decompression

X	Original Physical Properties	Results
X	Hardness (Shore A)	83
X	Tensile Strength, MPa	32.7
	Elongation (%, min, D412)	192
	Modulus @ 100% Elongation, MPa	18.3
No. of Lot, or other Persons in contract of the lot of	Compression Set (22hrs @150°C) %	18

Products

Packing elements

These results represent typical material properties. They are achieved under laboratory conditions and do not necessarily correspond to results measured on finished goods. It does not absolve the customer of the responsibility to make tests for their intended process or purpose. Ceetak Ltd makes no warranties and assumes no liability in connection with any use of this information.

Ceetak Aberdeen

Block 1, Unit 13, Souterhead Road, Altens Ind Est, Aberdeen, AB12 3LF Tel: 01224 249690

E: aberdeen@ceetak.com

www.ceetak.com